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SUMMARY 

I -  
I 

I 
I 

A discussion of an exact method for the determination of stability 

margins in any channel of a multiloop sampled data system is given. 

The stability margins are determined for the attitude channel of the 

thrust vector control system using a continuous compensation function 

and a 2.5 hertz sampling rate. 

the development of digital compensation in the attitude rate channel 

and examples are given for 25 hertz and 2.5 hertz system sampling 

rates. The "hidden instability" problem is discussed and general 

guidelines are given for the prevention of system instability. An 

introduction to the analysis of mltirate sampling systems is pre- 

sented and several methods of analysis are investigated. 

A design approach is suggested for 
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I- INTRODUCTION 

I 

I 

In the "Third Technical Report" considerable emphasis was placed 

on approximate methods for determining an open-loop transfer function 

for a multiloop sampled-data system opened between continuous data 

elements. 

tion of the system using standard frequency domain techniques and to 

provide a method of ascertaining stability margins. 

procedure for obtaining an exact transfer function is not known, and 

may not exist, the exact stability margins may be determined at any 

point by the approach suggested in Chapter 11. 

This transfer function is required to facilitate-compensa-- 

Although a 

Chapter I11 contains the results of a brief investigation into 

the effect of a reduced sampling rate on the stability of the con- 

figuration described by Figure 1. 

The design of a digitally-compensated control system is dis- 

cussed in Chapter IV. 

the development of a compensation function for the case when the 

sampling rate is 25 hertz and again when the system sampling rate is 

2.5 hertz. 

A design technique is evolved and applied to 

It is reasonable to expect that system performance may be enhanced 

by using different rates of sampling in the rate and attitude loops. 

Chapter V, which serves as an introduction into the area of multiloop 

systems, smrizes the findings in this field to date. 

1 
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Fig. 1--Block diagram of the thrust vector control system. 



11. THE EXACT METHOD FOR DETERMINATION OF STABILITY MARGINS 

R. Cavin, I11 

For a combined analog-sampled system such as the thrust vector 

control system of Figure 1, it is often necessary to obtain infor- 

mation indicative of system stability margin for various branches of 

the block diagram. Two of the most c m o n  and most useful measures 

of system stability are gain margin and phase margin, both of which 

result from frequency dependent stability criteria. In order to 

obtain gain and phase margin, it is normally necessary to develop 

an open loop transfer function at that point in the system where 

stability margins are desired. 

reports , an exact open loop transfer function cannot presently be 

As has been illustrated in previous 

1 

written for a multiloop combined analog-sampled system, opened between 

continuous elements. In fact for the particular system of Figure 1, 

an exact, sampled, open loop transfer characteristic can only be 

determined by opening the system at 0. Of course, Nyquist plots 

derived from this open loop transfer characteristic can be used to: 

(a) give exact phase and gain margin at 0 and (b) determine whether 

or not a praticular combination of parameters and compensation yield 

a stable system. 

'Phillips, C.L., et.al., "Digital Compensation of the Thrust Vector 
Control System'' Second Technical Report Auburn Research Foundation, 
1 November 1964 to 28 May 1964, page 5. 

3 
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Now the "exact method", discussed in the STL Interim Report 

2 4185-6005-RUOOO, section 11-B-3-a ,takes advantage of the available 

open-loop transfer characteristic at @ in order to determine the 

gain margin at any other point in the system. For instance the gain 

margin at f3 

increasing (or decreasing) this gain from unity until the open loop 

Nyquist at @ indicates that the system is unstable. 

at pc then is simply that value of gain at which neutral stability 

is effected. 

can be determined by inserting a variable gain at pc, 
C 

The gain margin 

Although not discussed in the referenced STL report, the phase 

margin at any point in the systemmay be determined in much the same 

manner. The phase margin at pC, for example, can be determined by 

inserting a phase shift term, e'', at 

negatively) about zero until the open 

system instability. That value of 8 

pC and varying 8 positively (or 

loop Nyquist at @ indicates 

which causes neutral stability 

is the phase margin of the system at Bc. One of the biggest short- 

comings of the exact method is that convergence to the stability 

margin is not always systematic. A plot such as that of Figure 2-9 

of the referenced STL report, where gain margin at @ is plotted as 

a function of gain at pc, should increase the rate at which one 

converges to the gain margin at f3,. 

Another disadvantage of the "exact method" is that for each 

value of gain or phase at the branch under investigation, a new 

*J. HolzmOn, et al, "Review of Digital Control Systen Design Techniques 
for Missiles", STL Report 4185-6005-RUOOO, 16 April, 1965. 
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Nyquist p l o t  a t  4 must be generated. 

l i t t l e  information can be derived from the  exact method t h a t  w i l l  

a i d  i n  t h e  choice of s u i t a b l e  compensation, i .e.,  the open loop 

frequency response a t  t h e  branch under study i s  not ava i l ab le  by the  

"exact method". This method is therefore l imited t o  the  determina- 

t i o n  of system s t a b i l i t y  margins and, i n  general, is  not w e l l  su i t ed  

f o r  the  synthes is  problem. 

Further,  i f  the  system, is  unstable,  

It should be emphasized t h a t  t he  v a r i a t i o n  of gain o r  phase s h i f t  

a t  f3, w i l l  a l ter  the  loca t ion  of the open loop poles for  the 4 t rans-  

f e r  function and consequently may change the  required number of en- 

circlements of the  -1 poin t  by the  @-Nyquist p l o t  t o  give s t a b l e  

operation. However, r a t h e r  than attempt t o  ex t r ac t  the  closed-inner 

loop roo t s  fo r  each value of 8 o r  gain, a m c h  more t r a c t a b l e  approach 

i s  provided by p l o t t i n g  a Nyquist diagram f o r  t he  inner loop alone, 

opened a t  pc. 

func t ion  are known, t h e  e f f e c t  of g a i n o r  phase s h i f t  a t  f? on closed 

inner-loop roo t s  and therefore  roots of the  open-loop t r ans fe r  func- 

t i o n  f o r  I$ can be d i r e c t l y  determined. The above method can bes t  be 

i l l u s t r a t e d  by an example. 

Then, i f  the  open-loop roo t s  of t he  inner loop t r a n s f e r  

C 

Consider the  simple system of Figure 2. 

(1) F i r s t ,  construct a Nyquist diagram of inner loop wi th  K = 1. 

This i s  given by Figure 3. 

no n e t  encirclements of -1 poin t ;  thus, t he re  i s  one unstable closed- 

loop pole. 

There is one unstable open loop roo t  and 

I f  K is  g rea t e r  than 2, t he re  are no unstable closed- 
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Fig. 2--Example system. 

Fig. 3--Inner loop Nyquist plot for the example system. 
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loop poles. (The Nyquist diagram need not be rep lo t ted  fo r  each K: 

r a the r ,  the  e f f e c t  of K va r i a t ion  can be shown by changing t h e  scale 

of t he  p lo t . )  

(2) Next construct  t he  outer loop Nyquist diagram for  the  

system fo r  d i f f e ren t  values of K. 

Nyquist is  given by Figure 4. 

-1 point ,  and since,  from Figure 3 the re  i s  one unstable  open loop 

root ,  t he  system i s  s tab le .  

Choose K = 1. The form of t h e  

There i s  one ne t  encirclement of the  

(3) Consider t he  outer  loop Nyquist diagram fo r  K = 3 as given 

by Figure 5. 

from Figure 3 the re  are no unstable open loop roots ,  thus the  system 

i s  s t ab le .  

Note t h a t  t he re  are no encirclements of -1. However, 

The above example, while elementary from the  standpoint of mathe- 

matical complexity, does serve t o  emphasize t h e  necess i ty  of main- 

t a in ing  a systematic method t o  keep t rack  of the  open loop roo t s  of 

t he  system. 
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Fig. &-Outer loop Nyquist p lot  for the example system with 
K = 1. (Inner loop closed.)  

\ 

Fig. 5--Outer loop Nyquist p lot  for example system with K = 3. 
(Inner loop closed.)  



111. STABILITY OF THE THRUST VECTOR CONTROL SYSTEM 
WITH A 2.5 HERTZ SAMPLING RATE 

R. Cavin, I11 

I n  order t o  determine the  e f f e c t  of reduced sampling frequency 

on system s t a b i l i t y ,  t h e  system described by Figure 1 and t h e  equa- 

t i o n s  of Appendix A w a s  investigated f o r  a sampling frequency of 2.5 

her tz .  

when t h i s  sampling frequency i s  used. This l imi t a t ion  r e s u l t s  be- 

cause the  continuous-data and f i c t i t i o u s  sampler approximation 

methods are not appl icable  when oS/2 i s  i n  t h e  range of t he  bending 

mode frequencies. (as denotes the system sampling frequency.) Con- 

sequently, i t  i s  only poss ib le  t o  compare the  Nyquist diagrams of the  

2.5 h e r t z  system and the  25 her t z  systems by using the open loop 

t r a n s f e r  functions computed a t  @. These Nyquist diagrams w e r e  de- 

veloped with the a i d  of t he  computer program of Appendix B. 

Figure 6 i s  a Nyquist diagram f o r  t h e  system of Figure 1 opened 

An open loop t r a n s f e r  function can be developed only a t  0 

a t  0 with a, = al = 0.5 and T = 0.4 seconds. 

a r i g i d  body gain margin of 8 db and a phase margin of -25 degrees. 

Because of t he  increased a t tenuat ion  of t he  2.5 her t z  zero-order hold 

relative t o  t h e  25 her t z  zero-order hold a t  t h e  body bending f r e -  

quencies, the  body bending modes do not  present a ser ious  s t a b i l i t y  

problem. Figure 7 i s  a Nyquist diagram f o r  the  system of Figure 1 

opened a t  @ with  ao=al= 0.5 and T = 0.04 seconds. 

Note tha t  t he  system has 

For t h i s  f a s t  

9 
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rate system, a phase margin of -36' and a rigid body gain margin of 

16 db are provided by the compensation function, PHDTCO. However, 

the second bending mode has a gain margin of only +9 db. 

Consequently, for the example chosen, the reduced sampling rate 

diminishes rigid body stability margins relative to those of the 

same system with fast-rate sampling and provides increased bending 

mode stability margins relative to those of the fast-rate system. 

The reduction of rigid body stability margins is due primarily to 

the phase lag introduced by the zero-order hold. 



IV. THE DESIGN OF A DIGITALLY COMPENSATED 
THRUST VECTOR CONTROL SYSTEM 

R. Cavin,III 

Introduction 

In this chapter, a method for determining digital compensation 

The design pro- for the thrust vector control system is developed. 

cedure is illustrated by the development of compensation functions 

for a 25 hertz and a 2.5 hertz sampling rate system. General dis- 

cussions are given on the problem of hidden instability in 

data control systems. 

sampled- 

The assumptions which are pertinent to the design approach taken 

in this chapter are: 

1. The vehicle attitude and attitude rate will be assumed to be 

synchronously sampled at the same sampling frequency. 

2.  When the required digital compensation transfer functions are 

determined, a vehicle digital computer is assumed to be n 

1 available to implement the specified digital transfer func- 

t ions. 

3. Design factors other than stability, such as load relief, 

are not considered. 

Some Analytical Considerations 

A useful characteristic of sampled data systems is that the fre- 

quency response, whether determined in the z ,  s or w plane, is unique. 

13 
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Now, f o r  high order,  low-pass systems, it has been found through ex- 

perience t h a t  t he  frequency response is  most e a s i l y  obtained by the  

f i n i t e  series expansion method i n  t h e  s-plane. 

p lane  frequency, $D, t he re  corresponds B w-plane frequency, jr. j r  

may be r e l a t e d  t o  ju a s  follows. 

For a spec i f ied  s- 

s = (0 + j u )  

The so lu t ion  of equation 2 for  w is 

j s i n  Tu 
1 + cos Tu, 

w = (0 + jr) = (3) 

where T i s  the  sampling period. 

Therefore, i f  t he  open loop frequency response i s  computed, con- 

ventio.na1 compensation techniques may be used t o  spec i fy  the  w-plane 

t r a n s f e r  function required f o r  s t a b i l i t y .  Then by using transforma- 

t i o n  (l), the  required sampled t r ans fe r  c h a r a c t e r i s t i c  can be determined. 

The development of a compensation function fo r  a d i g i t a l  system 

follows e s s e n t i a l l y  the  same design procedures as t h a t  of conventional 

continuous-data compensation. 

t h e  design process which d i f f e r  s u f f i c i e n t l y  t o  r equ i r e  s p e c i a l  con- 

s ide ra t ion .  

There are, however, c e r t a i n  aspec ts  of 

Consider t he  system block diagram given by Figure 8. 

Now, the  t r a n s f e r  function for t he  system shown by Figure 8 i s  
. /  

, 

given  by equation (4) below. 
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EO* - (s) = 
Et* 

Suppose that transfer functions B(s) and C(s) have the same poles. 

(This supposition is applicable for the thrust vector control system 

since the @/$e and the transfer functions have identical denomi- 

tors.) From standard references , the starred transform of a function 1 

of s, E*(s), is given by equation (5). 

where: 5, designates the nth root of the denominator polynomial, D ( s ) .  

k represents the total number of roots of D ( s ) .  

D' (5 , )  - -- dD(0 1 
a( 5 = 5, 

have identical denominator poly- 

nomials in e-*s, i.e., 

'Ku0,B.C. , Analysis and Synthesis of Sampled-Data Control Systems, 
(Englewood Cliffs, N. J.: 1963), pp. 54-56. 
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HoAC(S) * = - p2 and [HoAB(s)]* =: [ I Q  
substitution of ( 6 )  into ( 5 )  yields: 

Eo*@) - - P2 

Ei*(S) Q - P1 
The usefulness of the result expressed by equation (7) is 

(7) 

illustrated in the following paragraph which describes a method of 

aomputing the number of unstable poles of the open*loop transfer 

function of the TVC system opened in the channel. (See Figure 9) 

System transfer functions which are used throughout the 

report are given by Appendix A. Note that G1 and 9 have the same 
denominators. In order t o  determine the compensation requirements 

for the system, a Nyquist diagram can be generated for (40)*/(d'i)*. 

However, before the diagram can be interpreted, it is necessary to 

know the number of unstable open-loop poles. 

unstable poles for the closed loop in Figure 9 can be determined by 

generating a Nyquist plot for this loop alone. Suppose, as an example, 

that there are two unstable poles due to the closed loop portion of 

Figure 9 and, as indicated by Appendix A, there is one unstable open- 

loop pole due to %. Because of the cancellation effect described in 

the preceding paragraphs, there are only two, not three, unstable open- 

loop poles for the system transfer functions opened in the 6 channel. 

The number of closed-loop, 
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Compensation Design 

In the following paragraphs, the method by which a compensation 

function can be determined is given. 

sample period of 0.04 seconds is assumed throughout,a, = al = 0.5, and 

the transfer functions of Appendix A are used. 

were obtained by using a five term series expansion to represent the 

starred-transform terms which arise in the open-loop transfer functions 

and the computer program of Appendix C was used to determine the 

curves. The following steps were taken to develop the compensation 

function for the system to be inserted in the @ channel. 

In the ensuing discussion, a 

All Nyquist curves 

A. To determine the total number of open-loop unstable poles 

for the system opened in the 6 channel, it is first necessary to 
establish the number of open-loop unstable poles contributed by the 

closed @ loop. This can be done by simply generating a Nyquist plot 

for the @ loop alone. 

Since the open loop transfer function for the @ channel alone contains 

The resulting curve is shown by Figure 10. 

one unstable pole, there are two unstable poles due to the closed 0 

loop in the open loop transfer function for the system opened in the 

@ channel. 

fore two unstable open-loop poles for the system opened in the @ 

As a consequence of preceding discussions, there are there- 

channe 1. 

B. Next, the total Nyquist plot is generated for the system opened 

in the @ channel. The open-loop transfer function is given by (8). 
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The resulting Nyquist Curve is given by Figure 11 and indicates that 

the system characteristic equation has two unstable roots, hence re- 

quiring compensation. 

C. In order to attain the required two counter-clockwise en- 

circlements on Figure 11, the following design procedure was used. 

Note that the curve (at low frequency) exceeds zero db at approximately 

92 degrees and proceeds in a counter-clockwise sense to - 9 6 O ,  at 

which point it reverses its direction and crosses the 180 degree line 

at 17 db. 

less than zero db without altering the remainder of the plot appreciably, 

stable operation will result. 

that the introduction of a double order lag at a w-plane frequency of 

0.07 would yield the desired 180 degree crossover at about -15 db. 

However, the additional phase lag introduced by this double order lag 

resulted in a condition of possible instability due to the first 

bending mode. 

was decided to phase stabilize the first bending mode. This was 

accomplished by the introduction of a second order lead term at a w- 

plane frequency of (.24) with a damping ratio of 0.25. 

of the bending modes are gain stabilized by this compensation function, 

which for high frequencies provides an attenuation of approximately 

-21 db. 

If this 180 degree crossover point is made to occur at 

By trial end error, it was determined 

In order to circumvent this potential problem area, it 

The remainder 

The complete compensation transfer function is: 
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w + (2 -0 ) (0 .25 )~  + 1.0 
G, (w) = 1.24)4 0.24 

2 (W + 1) 
.07 

where 

w = (p + jr) 

Gain and phase p l o t s  of Gc(jr) are  given by Figures 12 and 13 respec- 

t i ve ly .  

i n  t he  i channel. 

Figure 14 i s  a Nyquist p lo t  fo r  compensated system opened 

The open loop t ransfer  for Figure 14 is: 

G (w). (Ho.W .G )* 
O.L.T.F. ( O m )  = 

b 1.0 - (Ho.WSs.G1)* 

From Figure14, it may be seen t h a t  the  gain margin i n  the  @ channel 

is  -15 db and +25 db and t h a t  phase margins of -53' and +65O a r e  

obtained. 

D. The r e s u l t s  obtained t o  t h i s  point  ind ica te  tha t  acceptable 

s t a b i l i t y  margins a re  provided f o r  the  @ channel, however, an important 

quest ion is: What are the  s t a b i l i t y  margins provided by t h i s  compensa- 

t i o n  funct ion i f  the system is opened i n  the  O channel?" 

block diagram of the th rus t  vector cont ro l  system opened i n  the  @ 

channel shown by Figure 15. 

Consider t h e  



0 
23 

0 N 0 0 O 
\D I '3 0 N 

qp-urw 



0 
24 



I 

V 
al 
0 rl 

u 
a 
0 
3 

n 
0 rl 

E 

m 
U 

2 



26 

I +n 

Fig.l5--Block diagram of compensated thrust vector control 
system opened in 4 channel. 
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p rec i se ly  the same approach which was  used i n  t h e  preceding s t eps  

F i r s t  the number of unstable open-loop poles con- i s  appl icable  here. 

t r i b u t e d  by the  closed, compensated & loop must be determined. 

Nyquist p l o t  f o r  t he  @ loop alone i s  given by Figure 16. 

The 

There is  one 

uns tab le  open loop pole f o r  t h i s  loop alone and no n e t  encirclements 

of -1 poin t  by t h e  Nyquist diagram, thus the re  i s  a t o t a l  of one 

uns tab le  open-loop roo t s  f o r  t he  compensated t h r u s t  vector control 

system opened i n  t h e  d channel. 

E. The open-loop t r a n s f e r  function fo r  t he  system opened i n  the  

d channel as shown by Figure 15 is given by equation (11). 

1.0 - GC(w) (Ho.WSs.G2)*(s) 

The Nyquist diagram of equation (8) is given by Figure 17. Phase 

margins of -37 and +80 degrees and ga in  margins of -8 and -16 db are 

indica ted  by Figure 10. 

F. A t h i r d  point i n  the  system at  which s t a b i l i t y  margins are 

requi red  i s  f3,. t he  

h ighes t  bending mode frequency, acceptably accura te  r e s u l t s  w i l l  be 

obtained by using the  oontinous approximation method. 

Since uS/2 exceeds by almost a f ac to r  of four 

A block 

diagram of the  system opened a t  f3, i s  given by Figure 18, and the  open 

loop t r a n s f e r  function is: 



W 

0 
4 
m 
a 
0 
d 

. 0  

m 
Ly U 

Q 

W 

m 

B 

5 

u 
W 

J.l 

W 

u 
0 d 

a 
u 
m 4 

1 0. x 
F 
\D d 

M 4 
@I 



I 

P 
W 

0 4 

0 

a 
0 + 

I +  

W 

m 

5 
s 
4 
3 
a 
0 
4 

e 
W 
Jz U 

c 4 
P W 

a 

I 
k 

2 

U 
m 

P 
W U 

m 

4 
W s 
3.4 

W 

U 
0 d 
a 
U 

d 
m 

ii 
F 
P- 4 

M + 
h 



30 

I 
0 a 

U 
od 

a 
Q) 

a 
0 
!i 

E 
Q) 
U 

k 
0 u 
c) 

f 

i2 
U 
OD 

c 
U 

M 
rl 
E 



31 

Equation 12 ind ica t e s  t h a t  the open-loop t r a n s f e r  function has 

one uns tab le  roo t  (See Appendix A) and thus one encirclement of t h e  

zero db point is required of t he  Nyquist diagram of the  compensated 

system. 

8, and t h i s  f i gu re  ind ica t e s  t h a t  t he  compensation function provides 

a ga in  margin of 12 db and a phase margin of -25 degrees. 

Figure 19 i s  the  Nyquist diagram f o r  t he  system opened at 

One p o t e n t i a l  design d i f f i c u l t y  i s  revealed by Figure 19 i n  

t h a t  there  i s  an inord ina te  amount of loop gain a t  a phase angle 

of -150 f o r  t he  t h i r d  bending mode frequency. 

t h i s  would j u s t i f y  refinement of the compensation function given by 

equation 9. 

0 I n  a production design 

Real iza t ion  of the  Compensation Function 

The z domain t r a n s f e r  function may be  computed from (9) by using 

t h e  transformation given by 13. This is given by equation (14). 

2 - 1  

z + l  
w = -  

(14) 18.5682 - 32.722 + 18.152 - Eo (2) 
4 -- Gc(z) = 

4 . 2 0 0 9 ~ 1 0 ~ 2 ~  - 8.3198~10 z + 4.1193~10 

There are seve ra l  methods by which the  t r a n s f e r  func t ion  given by 

(14) may be rea l ized .  

w i l l  be used. 

y i e lds :  

I n  t h i s  example the  "Direct Programming" method 

2 Dividing the  numerator and denominator of (14) by z 
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E&) - 
E i  (2) 

18.568 - 3 2 . 7 2 ~ ‘ ~  + 1 8 . 1 5 2 ~ - ~  

4 . 2 0 0 9 ~ 1 0 ~  - 8 . 3 1 9 8 ~ 1 0 ~ ~ ’ ~  + 4 . 1 1 9 3 ~ 1 0 ~ ~ ‘ ~  
-- 

o r  equivalently:  

-4 1 4 -2 ( 4 . 2 0 0 9 ~ 1 0 ~  - 8.3198~10 Z + 4.1193~10 z )Eo(z) = 

(18.568 - 32. 722-1 + 18. 152z-*)Ei (z) 

Taking the  inverse z transform yields:  

4 . 2 0 0 9 ~ 1 0 ~  eo*(t) - 8 . 3 1 9 8 ~ 1 0 ~  eo*(t - T) +. 4.1193~10 4 eo*(t - 2T) = 

18.568 ei*(t) - 32.72ei*(t - T) -t 18.152 ei*(t - 2T) 

Solving equation (17) fo r  eo*(t)  gives: 

ei*(t-T) + 18*152 ei*(t-2T) 18-56’ e *(t) - 32.72 

4.2009~10 4.2009~10 i e *(t) = 
4 . 2 0 0 9 ~ 1 0 ~  0 

8.3198 ( 4.2009) 

For s impl ic i ty  of 

eo*(t - T) - - eo*(t - 2T) C:z) 
notation, l e t  

18.568 ,, = 32.72 c =  18.152 d =  8.3198 

4 . 2 0 0 9 ~ 1 0 ~  ’ 4. 20O9xlO4’ 4 . 2 0 0 9 ~ 1 0 ~ ’  4.2009 
a =  

- 4.1193 
4.2009 

e -  



34 

Thus (18) becomes 

eo*(t) = ae *(t) - bei*(t-T) + cei*(t-2T) + deo*(t-T) 
i 

-e eo*(t-2T) 

The implementation of equation (19) i s  given by Figure 20. 

D i g i t a l  Compensation of the Thrust Vector Control System 
With a Sampling Rate of 2.5 Hertz 

I n  order t o  determine the  e f f e c t  of a reduced sampling rate on 

the  compensation problem, the  s t a b i l i z a t i o n  technique applied pre- 

v ious ly  w a s  applied t o  the  t h r u s t  vector cont ro l  system using a 

sampling rate of 2.5 he r t z  i n  both t h e  rate and a t t i t u d e  channels. 

The Nyquist diagram fo r  t he  cb loop alone i s  given by Figure 21. 

From Figure 21, it i s  apparent t h a t  t he re  are two uns tab le  r o o t s  due 

t o  t h e  closed rb loop. Therefore, there  a r e  two uns tab le  poles f o r  

t h e  open-loop t r a n s f e r  function at  6. 
The Nyquist diagram fo r  t he  uncompensated system opened i n  the  rb 

channel i s  presented by Figure 22. 

of t h i s  curve. This r e s u l t s  from r e f l e c t e d  bending modes,and t h i s  

Note the  r a t h e r  erratic behavior 

(19) 

unusual behavior i s  p a r t i c u l a r l y  evident when t h e  system is opened i n  

the  i channel. 

system was derived by u t i J i z i n g t h e  &de p l o t s  of Figures 23 and 14 

A compensation function which r e s u l t s  i n  a s t a b l e  

i n  conjunction with trial and e r ro r  compensation methods. The compensa- 

t i o n  is  given by equation (20). 

i 
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2(0.5)w + 
2 

W 

- (0.92)2 0.92 GCl(W) - 
+ 112 W 

From Figure 25, which is a Nyquist plot for the compensated 

system opened at 6, it is seen that Gcl(w) stabilizes the system and 

provides -30 degrees of phase margin and 11.0 db of gain margin. 

Next, in order to more completely evaluate the compensation func- 

tion, it is necessary to determine stability margins at (0. Figure 26 

is a Nyquist diagram for the compensated (0 loop alone. 

diagram, it can be determined that the open-loop transfer function 

for the thrust vector control system opened at (0 has one unstable pole. 

The Nyquist plot for the compensated system opened in the 4 channel is 

given by Figure 27. 

margin and 6 db of gain margin. 

From this 

The compensated system has -23 degrees of phase 

The continuous approximation method which was used to derive 

stability margins at 

the 2.5 hertz system because sone of the body-bending frequencies 

are greater in magnitude that the sampling frequency. 

for the 25 hertz system i s  not applicable for 

r, 

Although the primary objective of this chapter was to present a 

design technique for digital compensation of the T.V.C. System it may 

also be observed that the effect of reduced sampling rate is to require 

an increase in the complexity of the compensation function in order to 

maintain satisfactory stability margins. 
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4.4 

Stability Considerations for 
Linear, Sampled-Data Systems 

It is well known that a necessary condition for the stability 

of a sampled data system is that all of the zeroes of the characteris- 

tic equation lie within the unit circle of the z-plane. However, 

the satisfaction of this condition is not sufficient to guarantee 

that stable behavior will result between sampling instants. 

The system response between sampling instants may be determined 

by application of the modified z-transform technique or other equiva- 

lent procedures. 

tional information on system stability which does not result from the 

equations derived using the standard z-transform method. Additional 

data is provided if and only if at least one pair of the continuous- 

data eigenvalues 

kcus/2. 

a counting number. 

phenomenon. 

The modified z-transform method can provide addi- 

has an imaginary component whose magnitude is 

us is the sampling frequency in radians per second and k is 

The following example is an illustration of this 

Consider a continuous data element whose partial fraction ex- 

pansion is of the form given by equation (21) 

2 + K1 + + Kj ...... ...... 2 -. 
G(s) = 

s + a1 (s-a> + cos 

Taking the z-transform of G(s), we get: 
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The z-transform of the  jth t e r m  is: 

K j  2K.ef l s iw T = 

2 1  =- 

2x 
T Since s i n  uST = s i n  (-)T = 0 

As a r e s u l t ,  the  influence of t h e  jth t e r m  of (21) on system s t a b i l i t y  

i s  not considered by a z-transform s t a b i l i t y  evaluation. Now the  

modified z-transform of the  jth term of (21) does not vanish and i s  

given by (24) below. 

Let G. . (s )  represent t he  t r a n s f e r  function of t h e  continuous da ta  

elements connecting t h e  output of t he  ith sampler t o  the input of 

t h e  jth sampler. 

imaginary component i s  equal t o  kws/2, then the re  e x i s t s  a p o s s i b i l i t y  

of hidden i n s t a b i l i t y .  

t h e  G..(s) has a pole whose imaginary p a r t  coincides with kws/2 and 

if the  roo t s  of t he  system c h a r a c t e r i s t i c  equation l i e  wi th in  t h e  

u n i t  c i r c l e ,  t he  system i s  stable.  

13  

. Therefore, i f  any of the G i j ( s )  has a pole whose 

A more usefu l  a s s e r t i o n  is: I f  none of 

=J 
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The preceding discussion ind ica tes  t h a t  t he  choice of t he  system 

sampling frequency should be based i n  p a r t  on the  loca t ion  of t h e  

eigenvalues of the  continuous elements of the  system. I n  f a c t ,  i n  

t h e  event of poorly defined o r  slowly varying continuous element 

parameters, t he  above arguments lend support t o  t h e  choice of cus 

such t h a t  us/2 is g rea t e r  than t h e  maximum expected imaginary com- 

ponent of t h e  poles of the  Gi j ( s ) .  



V. ANALYSIS OF MULTIRATE SAMPLED-DATA SYSTEMS 

C. L. Phillips 

In this chapter various methods of analysis of multirate sampled- 

data systems are discussed. 

analyzed using the describing-function technique. 

techniques presented in kTL report No. 4185-6014-RUOOO, dated 16 April, 

1965, are investigated. 

First a single-loop multirate system is 

Then the two 

3 

Analysis of a Single-Loop Multirate Sampled-Data System 

To start the investigation into the methods of analysis of multi- 

rate sampled-data control system, the system of Figure 28 was chosen. 

This system will be investigated using both the z-transform method and 

the describing function method. 

For the system of Figure 28, the transfer function is seen to be, 

by the method of switch decomposition, 

N- 1 

transfer function = G1(z)G2(z) + 1 [E% G1(5)]X 

n=l 

The switch decomposition method is discussed in the monthly report of 

28 November 1964,of this contract. Consider first that N = 2. Then 

3~01zman, op. cit. 47 
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T G1(z) =- 
2 - 1  

(1/2)T ,Ts 

Then 
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4 
t r a n s f e r  function = ( 1/4)$ (z + 3) 

(2 - 1)2 

(29) 

Values of the  t r a n s f e r  function a re  given i n  Table 1 a s  z var i e s  along 

t h e  upper ha l f  of the  u n i t  c i r c l e ,  f o r  T = 0.04. 

The t r a n s f e r  function of (25) can a l s o  be wr i t t en  as 

m Q) 

t r a n s f e r  function = [ 1 G1(s + jms)] [: 1 G2(s+jms)] 

m- m- 
(31) 
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TABLE 1 

RESPONSE OF SYSTEM OF FIGURE 28 for N = 2 

Gm 
0.209 / -183.9O 
0.526 x 10-1/188.10 

0.1332~10- L195O 

0.209~10-~ /2 - 18.2O 

0.1225~10-~ L230.2' -- 

0.806~10-~ L242.8' 

0.635~10-~/255.2' 

0.418~10-~h269.90 

0.235~10-~k316.8~ 

0 .  2x1~-3/00 

frequency-hz. 

0.347 

0.694 

1.39 

3.47 

4.51 

5.56 

6.25 

7.65 

10.4 

12.5 

describing-function 
response 

0.209 / -183.9' - 

0.524~10-~L187.9' 

0.130x10-1/195.30 

0.203~10-~/-2 17.5' 
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If the system is low-pass, then each infinite sumnation in (31) can be 

approximated by the m = 0 term, and the describing-function techni- 

que applies. Then (31) becomes 

nTs - N-l nTs - 
transfer function = G1(s)G2(s) = 1 1 [E G1(s)] E G2(s)] = 

9 T~ n=l 

For the system of Figure 28, for N = 2, 

Ts - 
-Ts 2 

2 (1- 1-E 
T2 s S 

2 )(--.T-) transfer function = - (33) 

Values of this transfer function are also given in Table 1, with the 

s-plane frequencies which correspond to the values of z in the z-plane. 

The system of Figure 28 was also investigated for the case that 

N = 5. Then 

4 nTs 
transfer function = G(z)G (2) + 1 ~[~yG,(s)]~ [CTG2(s)] ) 

n=l 
(34) 



and 

m I 
G1(z) = -  

2- 1 

52 

(35) 

nTs n 
+L] (2-1)2 

Then, from (lo), 

e 

transfer function = - 0 (39) 

Using the describing function technique,(31) becomes 

(40 )  
5 
T2 

transfer function = - G (s)G2(s) 

Values of the transfer functions (39) and (40) were calculated for 

values of z and corresponding values of s = jco. 

given in Table 2.  

These values are 
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Z - 
1/50 

1 / - 20° 

1& 

1 / Eo 
i 

1 i90° - 

1 h O 0  - 

TABLE 2 

RESPONSE'OF SYSTEM OF FIGURE 28 for N = 5 

E M  
0.211 / - -183.2' 

0.526~10- L18 -- 7.7O 

0.133~10-~/32~ 

0.205~10-~/~210.3~ 

0.1l8~10-~ L 2  19.8O 

0.754~10-~L249.5~ - -  

-3 I 0.578~10 /-236.3O -- 

-3 ' 
0.355~10 /-250.3O 

frequency-hz . 
0.347 

0.694 

1.39 

3.47 

4.51 

5.56 

6.25 

7.65 

describing-function 
response 

0.210 L183. - lo 

0. 524x10-1 k189.3' 

0.13 Ox 10- '/- 192O 

a. 203~10-~/-210.3~ -- 

0.117~10 -2 /-218.9' ' 

1 //1500 0.139~10-~/62.3~ - 10.4 0. 171x1O-3/9O0 

1,480' - 0.8~10-~/0~ - 12.5 0.102~10-~//72~ - 
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For t h e  system described above, one sampler operated a t  25 cps 

and t h e  o ther  a t  e i t h e r  50 cps or  125 cps. 

cribing-function approach i s  l i m i t e d  t o  frequencies less than fs/2,  

o r  12.5 cps, s ince  an input frequency of g r e a t e r  than f /2 w i l l  gene- 

rate a r e f l e c t e d  frequency a t  less than fs/2. 

and Table 2 t h a t  good co r re l a t ion  is obtained between the  z-transform 

approach and the  describing-function approach f o r  frequencies less 

than fs/2. 

quencies much less than fs/2 than for frequencies i n  t h e  neighborhood 

I n  e i t h e r  case, the  des- 

S 

It i s  seen from Table 1 

It is  noted t h a t  b e t t e r  co r re l a t ion  i s  obtained f o r  f r e -  

of f*/2. 

Multirate Analysis Technique No. 2 

The f i r s t  method of ana lys i s  of t he  aforementioned STL r epor t  t o  

be inves t iga ted  is  Technique No. 2. 

decomposition. 

t h e  STL repor t  is i n  e r r o r .  

This method i s  based on switch 

It w i l l  be shown tha t  one of the  r e s u l t s  obtained i n  

Technique No. 2 i s  a method of finding t h e  c h a r a c t e r i s t i c  equa- 

t i o n  of a mul t i r a t e  sampled-data cont ro l  system. 

here  w i l l  have a d e f i n i t e  r e l a t ionsh ip  between the  d i f f e r e n t  sampling 

rates, but t h e  method used can be applied t o  any mul t i r a t e  system 

f o r  which t h e  r a t i o  of the sampling rates is t h e  r a t i o  of two in tegers .  

The system considered 

Consider t h e  system of Figure 29. 

of T/2 and t h e  o ther  a t  a rate of T/3. 

One sampler operates a t  a r a t e  

Using the  switch-decomposition 

method, t h e  system can be redrawn as shown i n  Figure 30. The charac- 
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For t h e  system described above, one sampler operated at  25 cps 

and the  o the r  a t  e i t h e r  50 cps or 125 cps. I n  e i t h e r  case, t h e  des- 

cribing-function approach i s  l i m i t e d  t o  frequencies less than f /2, 

o r  12.5 cps, s ince  an input frequency of g rea t e r  than f /2 w i l l  gene- 

rate a r e f l e c t e d  frequency at  less than fs/2. 

S 

S 

It i s  seen from Table 1 

and Table 2 t h a t  good co r re l a t ion  is  obtained between t h e  z-transform 

approach and t h e  describing-function approach for  frequencies less 

than fs/2. 

quencies much less than f,/2 than for frequencies i n  t h e  neighborhood 

It i s  noted t h a t  b e t t e r  c o r r e l a t i o n  i s  obtained f o r  f r e -  

of  fJ2. 

Mul t i r a t e  Analysis Technique No. 2 

The f i r s t  method of ana lys i s  of t he  aforementioned STL r epor t  t o  

be inves t iga ted  is  Technique No. 2. 

decomposition. 

This method i s  based on switch 

It w i l l  be shown t h a t  one of the  r e s u l t s  obtained i n  

t h e  STL repor t  i s  i n  e r ro r .  

Technique No. 2 i s  a method of finding t h e  c h a r a c t e r i s t i c  equa- 

t i o n  of a multirate sampled-data cont ro l  system. The system considered 

here  w i l l  have a d e f i n i t e  r e l a t ionsh ip  between the  d i f f e r e n t  sampling 

rates, but t h e  method used can be applied t o  any mul t i r a t e  system 

f o r  which t h e  r a t i o  of the sampling rates i s  the  r a t i o  of two in tegers .  

Consider t he  system of Figure 29. 

of T/2 and the  o ther  a t  a rate of T/3. 

One sampler opera tes  a t  a rate 

Using the  switch-decomposition 

method, t h e  system can be redrawn as shown i n  Figure 30. The charac- 
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Fig. 29 --Single-loop multirate sampled-data system. 

Fig.30--System equivalent t o  that of Figure29. 



56 

t e r i s t i c  equation can be found by opening a loop i n  f ront  of any of 

the samplers, writ ing the open-loop t ransfer  function, and se t t i ng  

t h i s  t ransfer  function equal t o  one. 

Suppose tha t  the system of Figure 30 i s  opened at  the point 

x - x and le t  xo be the output and x be the input. Then the 

following equations can be written. 
0 1' 1 

Ts  -Ts 
y2* = (cT G)* xl* + (E T)* 3" 

2Ts 2Ts -Ts - 
y3* = (E 3 G)* xl* + ( E ~ &  T)* -* 

and 

-Ts -- 2Ts - 
3 )* y * + (he 

2 3 I* Y3" = "1" + (HE 
XO* 

In  vector-matrix notation, (41) and (42) can be expressed as,  re.?- 

spec t ive l y  , 

y* = &* 
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= By* 

To simplify the notation, l e t  

( i - l )Ts  (j-1)Ts 
2 )* = 

(E: GE: g i  j 

and 

(i-1)Ts -(j- l )Ts 

)* = h.. 
1J 

(E: HE: 

Then A and B oan be expressed as 

F - 
A =  

811 

g2 1 

g31 - 

Then (43) and (44) can be expressed as 

(45) 

where 



Let 
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n=l 

Then (48) becomes 

and, 

or 

c =  

from (47 1, 



59 

The characterist ic  equation, obtained by sett ing the expression i n  

or 

1 - c11 - c22 + CllC22 - c12c21 = 0 

From ( 4 9 ) ,  (54) becomes 

(54) 

From (45)  and (46 ) ,  (55) becomes 

3 -(n-l)Ts (n-l)Ts 3 Ts  -(n-l)Ts 

)* (E: G)* 1 (eT HE )* 
1 - 1 (HE 3 

n=l n=l 

(cont h u e d )  
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L 
n=l 

L 
n=l 

It w i l l  be noted t h a t  t h i s  equation is  d i f f e r e n t  from the  charac te r i s -  

t i c  equation obtained from Equation (2.84) of the  STL report .  This 

equation is  

-(m-l)Ts (n-l)Ts - (n- 1) Ts  (m- 1) Ts 

1 - f [e E G(s)] [E E H ( s ) ]  = 0 

(57) m=l  n=l 

where one sampling rate i s  T/p and the  o ther  i s  T/q. 

p w a s  2 and q w a s  3. 

but terms appear i n  (56) which do not appear i n  (57). 

For the  example, 

A l l  of t he  terms of (57) are included i n  (56), 

It i s  seen t h a t  d i f f i c u l t i e s  w i l l  occur i f  (56) i s  used t o  ob ta in  

a Nyquist diagram i n  order t o  determine t h e  ga in  margin and phase 

margin wi th  respec t  t o  e i t h e r  G o r  H. 

t h e  presence of terms i n  (56) which w i l l  r e s u l t  i n  t h e  gain of both G 

and H appearing i n  squared form. 

These d i f f i c u l t i e s  arise from 

The method i l l u s t r a t e d  here i s  a l s o  appl icable  t o  mul t i r a t e  
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multiloop sampled-data systems. 

a p a r a l l e l  combination of samplers, as shown i n  Figure 30. 

opening the  system i n  f r o n t  of any sampler, an open-loop t r a n s f e r  func- 

t i o n  can be obtained. 

Each sampler should be replaced by 

Then, by 

However, t h i s  t r a n s f e r  function would not have 

any phys ica l  meaning. 

Mul t i ra te  Analysis Technique No. 1 

The m u l t i r a t e  ana lys i s  Technique No. 1 of the  aforementioned 

STL r epor t  was  investigated,  and the f i n a l  r e s u l t ,  given by equation 

( 2 . 7 3 )  of t h e  repor t ,  w a s  found t o  be cor rec t .  However, some of the 

s t e p s  i n  the  ana lys i s  are not c lear ,  and these s t eps  are discussed 

below. 

To be mathematically co r rec t ,  i n  equation ( 2 . 4 5 )  and ( 2 . 4 6 )  

t h e  f a c t o r  G(n-kN) should be replaced by 

T 6  (n-kN)dn E > o  
n-E 

s i n c e  t h i s  i n t e g r a l  is  equal t o  un i ty  f o r  n = kN, and is zero for  a l l  

o t h e r  values of n. 

The motivation behind the  subs t i t u t ion  
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obtained from (2.51) and (2.53), is  obscure and the subst i tut ion seems 

t o  be unnecessary. 

(Na- l ) ,  i s  carried through the derivation intact .  Then, i n  equation 

(2.69), t h i s  sunnnation i s  replaced with a summation from 1 t o  N, 

which is  the  or ig ina l  sumnation i n  (58). 

The summation i n  the above equation, from a t o  

It i s  seen, from (2.74), t h a t  the same problems arise i n  using 
i 

Technique No. 1 as i n  using Technique No. 2. Using both techniques, 

the gain factor  K cannot be factored from the open loop t ransfer  

functions, and thus gain and phase margins cannot be obtained i n  a 

simple manner from a Nyquist diagram of the system. 



VI . CONCLUSIONS 
In Chapter 11, a method was discussed by which one can determine 

the exact gain and phase margin in any channel of a multiloop, single 

rate, sampled-data system. 

unwieldy in application. 

an open-loop frequency response for the system opened between con- 

tinuous elements and is therefore of little value in the synthesis of 

a compensation function. 

This "exact method" was found to be rather 

Further, it does not enable one to compute 

The influence of a reduced sampling rate on the configuration 

The system described by Figure 1 was investigated in Chapter 111. 

was found to be s t i 5 5  fcr 

rigid body stability margins are decreased relative to the same 

margins for the 25 hertz rate. 

sampling rate suppressed appreciably the bending mode resonances and 

thereby minimized the effect of these modes on stability. 

sampling rate of 2.5 hertz although the 

It was also noted that the reduced 

A technique was presented in Chapter IV which enables the sys- 

tematic development and evaluation of a compensation function for the 

thrust vector control system with synchronoas, equal rate, sampling 

in each of the attitude and rate channels. The technique was illu- 

strated by example with the development of compensation functions for each 

of the 2.5hertc and 25 hertz sampling rates. The problem of "hidden in- 

stability" was also discussed and a method of assuring that the 

system is stable between sampling instants was presented. 

63 
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In Chapter V, the describing function method was applied to a 

single loop,multi-rate system. 

techniques for the analysis of ~lti-looP, multi-rate sampling systems, 

Also a study was conducted of two 

These techniques were described in STL report no. 4185-6014-RUOO, 

dated 16 April, 1965 



The.following is  a list of the  t ransfer  functfons used i n  the 

body of the report. 

-0.94068468 G1R = 
s2 - 0.02972784 

0.65323138 x 10'2(s2 + 498.59362) 

s2 + 0.64905305 x lo-% + 42.126986 
G l B l  = 

-0.40378959 x 10'2(s2 + 485.48033) 

s2 + 0.1201345s + 144.32299 
G1B2 = 

G 1 ~ 3  = -0.53896739 x 10-2 (~2  + 470.36052) 
s 2  + 0.18378317s + 337.76255 

0.58368238 x 10'2(s2 + 469.03256) 

s2 + 0.22481237s + 505.40603 
G1B4 = 

625.0 

s2 + 25.0s + 625.0 
wss = 

65 
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0.33747 x 10 -8 s 8 + 0.57852 x 10 -7 s 7 

0.31188 x 10'10s9 + 0.30536 x 10'7s8 
PHDTCO = 

-5 6 -4 5 -3 4 0.32159 x 10 s + 0.38442 x' 10 s + 0.727818 x 10 s 
0.13131 x 10-5s7 + 0.33399 x 10-4~6 + 0.59308 x 10°3s5 

+ 

0 . 0 0 6 9 7 2 7 ~ ~  + 0 . 5 5 6 0 6 ~ ~  + 0.38360s + 1.0 

0 . 0 0 6 8 9 2 4 ~ ~  + 0 . 0 5 6 5 1 8 ~ ~  + 0 . 3 0 1 8 8 ~ ~  + 0.87623s + 1.0 
+ 
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